

Preface XVii

Web Site

We are posting materials relevant to this book at www.modelsoftcorp.com.

Acknowledgements

Over the years we have worked with a number of people who have taught us about their busi-
ness, given us the opportunity to try our ideas, and helped us learn in the process. We would
like to thank these many individuals, starting with our former management at the General
Electric R&D Center and continuing to our recent business friends and clients.

Although only two of us have written this second edition, the first edition had three ad-
ditional authors—Bill Premerlani, Fred Eddy, and Bill Lorensen. We thank them for their
past contribution on which this second edition builds. We also thank them for their support
and encouragement in our writing of this second edition.

Chris Kelsey had an important role in the second edition that deserves special mention.
She is the primary author of Chapter 18 on OO programming languages and also was an ac-
tive reviewer.

We are grateful to our other reviewers (Mikael Berndtsson, Peter Chang, Bill Premer-
lani, and John Putnam) for taking the time to read our manuscript and provide thoughtful
criticism. _

Finally we wish to thank our families and colleagues for being patient with our many
distractions and diversions during the writing of this book.

* Michael Blaha
Chesterfield, Missouri
blaha@computer.org

James Rumbaugh
Cupertino, California

xvi Preface

In addition there are a number of books that present the concepts of the UML. This book
is different than most in that it not only explains the concepts, but it also explains their fun-
damental purpose and shows how to use them to build software. We do not explain every
concept and nuance, but we do strive to explain the core of UML—enough to help you learn
how to use the UML to build better software.

Changes From the First Edition

It has been fourteen years since we completed the first edition of this book. In the meantime
there have been many advances in technology, leading to many changes in this second edi-
tion.

B Notation. We have replaced the OMT notation with the UML notation, specifically
UML 2.0. The UML is now the dominant and standard language for OO modeling.

B Process. The second edition adds more content to the software development process.
We now distinguish between domain analysis and application analysis. We have added
implementation modeling. By intent, we have kept the process simple and lightweight
so that it is approachable to students. This book’s process is a subset of heavyweight
processes, such as IBM Rational’s RUP.

M The three models. We have carried forward the first edition’s focus on “the three mod-
els” because we believe such an emphasis is helpful for teaching and learning OO mod-
eling. However, we dropped the functional model, because it was not as useful as we
had expected. In its place, we added the interaction model to incorporate use cases and
sequence diagrams and to give a more holistic understanding of behavior among several
objects.

B Software engineering. Part 4 covers several important software engineering topics: it-
erative development, management of models, and treatment of legacy systems.

B Programming languages. Programming languages have changed dramatically over the
past decade and a half. Smalltalk has faded, while C and Fortran have diminished in im-
portance. C++ and Java are now the dominant OO programming languages, and we have
focused on them accordingly.

B Databases. OO models provide a sound basis not only for programming code, but also
for relational databases. This book has an entire chapter that shows how to build effi-
cient, correct, and extensible databases from UML models.

B Case studies. When the first edition was published, we felt a need to justify OO tech-
nology, so we included several case studies. Today, many case studies are available in
the literature, so we have eliminated them from this book.

In this second edition, we have attempted to carry forward the first edition’s style, emphasis

on practical ideas, many examples, and many exercises.

Preface XV

cepts, such as syntax, semantics, recursion, set, procedure, graph, and state; a detailed formal
background is not required.

Our emphasis differs from that of some in the object-oriented programming community
but is in accord with the information modeling and design methodology communities. We
emphasize object-oriented constructs as models of real things, rather than as techniques for
programming. We elevate interobject relationships to the same semantic level as classes,
rather than hiding them as pointers inside objects. We place somewhat less emphasis on in-
heritance and methods. We downplay fine details of inheritance mechanisms. We come down
strongly in favor of typing, classes, modeling, and advance planning. We also show how to
apply object-oriented concepts to state machines.

The book contains four parts. Part 1 presents object-oriented concepts in a high-level,
language-independent manner. These concepts are fundamental to the rest of the book, al-
though advanced material can be skipped initially. The UML notation is introduced in Part
1 and used throughout the book. Part 2 describes a step-by-step object-oriented methodology
of software development from problem statement through analysis, system design, and class
design. All but the final stages of the methodology are language independent. Part 3 de-
scribes the implementation of object-oriented designs in object-oriented languages and rela-
tional databases. It describes the considerations applicable to different environments,
although it is not intended to replace books on object-oriented programming. Part 4 de-
scribes software engineering practices needed for successful object-oriented development.

The authors have used object-oriented analysis, design, programming, and database
modeling for many years now on a variety of applications. We are enthusiastic about the ob-
ject-oriented approach and have found it appropriate to almost any kind of application. We
have found that the use of object-oriented concepts, together with a graphical notation and a
development methodology, can greatly increase the quality, flexibility, and understandability
of software. We hope that this book can help get that message across.

The book has a rich variety of exercises that cover a range of application domains and
implementation targets. We suggest that you try working some of them as you go along. Ul-
timately, OO technology is not learned by reading about it, but by trying to practice it. An-
swers to selected exercises are included at the back of the book.

Comparison With Other Books

There are many books on the market that cover object-oriented technology. This book differs
from most in that it teaches how to think about object-oriented modeling, rather than just pre-
senting the mechanics of a programming language or modeling notation.

Many of the available object-oriented books are about programming issues, often from
the point of view of a single language. Some of these books do discuss design issues, but they
are still mainly about programming. Few books focus on object-oriented analysis or design.
We show that object-oriented concepts can and should be applied throughout the entire soft-
ware life cycle.

Xiv Preface

notation to be used throughout the entire software development process. The software devel-
oper does not need to translate into a new notation at each development stage.

We show how to use object-oriented concepts throughout the entire software life cycle,
from analysis through design to implementation. The book is not primarily about object-
oriented languages or coding. Instead we stress that coding is the last stage in a process of
development that includes stating a problem, understanding its requirements, planning a so-
lution, and implementing a program in a particular language. A good design technique defers
implementation details until later stages of design to preserve flexibility. Mistakes in the
front of the development process have a large impact on the ultimate product and on the time
needed to finish. We describe the implementation of object-oriented designs in object-
oriented languages and relational databases.

The book emphasizes that object-oriented technology is more than just a way of pro-
gramming. Most importantly, it is a way of thinking abstractly about a problem using real-
world concepts, rather than computer concepts. We have found this to be a difficult transition
for some people. Books that emphasize object-oriented programming often fail to help the
programmer learn to think abstractly. We have found that a graphical notation helps the soft-
ware developer visualize a problem without prematurely resorting to implementation.

We show that object-oriented technology provides a practical, productive way to devel-
op software for most applications, regardless of the final implementation language. We take
an informal approach in this book; there are no proofs or formal definitions with Greek let-
ters. We attempt to foster a pragmatic approach to problem solving by drawing upon the in-
tuitive sense that object-oriented technology captures and by providing a notation and
methodology for using it systematically on real problems. We provide tips and examples of
good and bad design to help the software developer avoid common pitfalls.

Who Should Read This Book?

This book is intended for both software professionals and students. The reader will learn how
to apply object-oriented concepts to all stages of the software development life cycle. We do
not assume any prior knowledge of object-oriented concepts. We do assume that the reader
is familiar with basic computing concepts, but an extensive formal background is not re-
quired. Even existing object-oriented programmers will benefit from learning how to design
programs systematically; they may be surprised to discover that certain common object-
oriented coding practices violate principles of good design.

The database designer will find much of interest here. Although object-oriented pro-
gramming languages have received the most attention, object-oriented design of databases
is also compelling and immediately practical. We include an entire chapter describing how
to implement an object-oriented model using relational databases.

This book can be used as a textbook for a graduate or advanced undergraduate course
on software engineering or object-oriented technology. It can be used as a supplementary
text for courses on databases or programming languages. Prerequisites include exposure to
modern programming languages and a knowledge of basic computer science terms and con-

v st

Preface

Welcome to the second edition of Object-Oriented Modeling and Design. Much has changed
since we finished the first book (1991). Back then object-oriented (OO) technology was con-
sidered new. Despite the excitement and enthusiasm, there was concern whether OO was re-
ally practical or just a passing fad. Consider all that has changed:

B OO languages. C++ is now established and Java has also become popular. The domi-
nant programming languages are now OO.

B OO databases. Somewhat surprisingly, OO databases have faded, but relational data-
bases are now including some OO features.

B OO modeling. The Unified Modeling Language (UML) standard from the Object Man-
agement Group has consolidated the multiple competing notations.

B 0O methodology. Development methodologies now routinely incorporate OO ideas
and concepts.

0O technology has truly become part of the computing mainstream. OO technology is no

longer the exception; rather it is the usual practice.

What You Will Find

This book presents an object-oriented approach to software development based on modeling
objects from the real world and then using the model to build a language-independent design
organized around those objects. Object-oriented modeling and design premote better under-
standing of requirements, cleaner designs, and more maintainable systems. We describe a set
of object-oriented concepts and a language-independent graphical notation that can be used
to analyze problem requirements, design a solution to the problem, and then implement the
solution in a programming language or database. Our approach allows the same concepts and

Xiii

Contents

Chapter 22 Managing Models

22.1
222
223
224
225
22.6
227
22.8
229

Overview of Managing Models, 403
Kinds of Models, 403

Modeling Pitfalls, 404

Modeling Sessions, 406

Organizing Personnel, 409
Learning Techniques, 410

Teaching Techniques, 410

Tools, 411

Estimating Modeling Effort, 413

22.10 Chapter Summary, 414
Bibliographic Notes, 414
References, 415

Chapter 23 Legacy Systems

23.1
23.2
233
234
235
23.6
23.7
23.8

Reverse Engineering, 416

Building the Class Model, 418
Building the Interaction Model, 419
Building the State Model, 420
Reverse Engineering Tips, 420
Wrapping, 421

Maintenance, 422

Chapter Summary, 422

Bibliographic Notes, 423
References, 424
Appendix A UML Graphical Notation
Appendix B Glossary
Answers to Selected Exercises

Index

Xi

403

416

425
426
a41
469

18.6

Chapter Summary, 342

Bibliographic Notes, 343
References, 343
Exercises, 344

Chapter 19 Databases

19.1
19.2
19.3
194
19.5
19.6
19.7
19.8
19.9

Introduction, 348

Abbreviated ATM Model, 352
Implementing Structure—Basic, 352
Implementing Structure—Advanced, 360

Implementing Structure for the ATM Example, 363

Implementing Functionality, 366
Object-Oriented Databases, 370
Practical Tips, 371

Chapter Summary, 372

Bibliographic Notes, 373
References, 373
Exercises, 374

Chapter 20 Programming Style

20.1
20.2
203
204
205
20.6

Object-Oriented Style, 380
Reusability, 380

Extensibility, 384

Robustness, 385
Programming-in-the-Large, 387
Chapter Summary, 390

Bibliographic Notes, 391
References, 391
Exercises, 391

Part 4: Software Engineering

Chapter 21
21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
219

lterative Development
Overview of Iterative Development, 395
Iterative Development vs. Waterfall, 395

Iterative Development vs. Rapid Prototyping, 396

Iteration Scope, 397

Performing an Iteration, 398

Planning the Next Iteration, 399
Modeling and Iterative Development, 399
Identifying Risks, 400

Chapter Summary, 401

Bibliographic Notes, 402
References, 402

Contents

348

380

393
395

Contents

Bibliographic Notes, 264
References, 264
Exercises, 264

Chapter 15 Class Design

15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
15.9

Overview of Class Design, 270
Bridging the Gap, 271
Realizing Use Cases, 272
Designing Algorithms, 274
Recursing Downward, 279
Refactoring, 280

Design Optimization, 280
Reification of Behavior, 284
Adjustment of Inheritance, 284

15.10 Organizing a Class Design, 288
15.11 ATM Example, 290
15.12 Chapter Summary, 290
Bibliographic Notes, 292
References, 293
Exercises, 293

Chapter 16 Process Summary

16.1
16.2
16.3

System Conception, 299
Analysis, 299
Design, 300

Part 3: Implementation

Chapter 17

17.1
17.2
17.3
174
17.5
17.6

Implementation Modeling
Overview of Implementation, 303
Fine-tuning Classes, 303
Fine-tuning Generalizations, 305
Realizing Associations, 306
Testing, 310
Chapter Summary, 312

Bibliographic Notes, 312
References, 313
Exercises, 313

Chapter 18 OO Languages

18.1
18.2
18.3
18.4
18.5

Introduction, 314

Abbreviated ATM Model, 317
Implementing Structure, 317
Implementing Functionality, 331
Practical Tips, 341

270

298

301
303

314

viii : Contents

Chapter 11 System Conception 173
11.1 Devising a System Concept, 173
11.2 Elaborating a Concept, 174
11.3 Preparing a Problem Statement, 176
11.4 Chapter Summary, 178
Exercises, 179
Chapter 12 Domain Analysis 181
12.1 Overview of Analysis, 181
12.2 Domain Class Model, 183
12.3 Domain State Model, 201
12.4 Domain Interaction Model, 204
12.5 Iterating the Analysis, 204
12.6 Chapter Summary, 206
Bibliographic Notes, 206
References, 207
Exercises, 207
Chapter 13 Application Analysis 216
13.1 Application Interaction Model, 216
13.2 Application Class Model, 224
13.3 Application State Model, 227
13.4 Adding Operations, 233
13.5 Chapter Summary, 234
Bibliographic Notes, 236
References, 236
Exercises, 236
Chapter 14 System Design 240
14.1 Overview of System Design, 240
14.2 Estimating Performance, 241
14.3 Making a Reuse Plan, 242
14.4 Breaking a System into Subsystems, 244
14.5 Identifying Concurrency, 246
14.6 Allocation of Subsystems, 248
147 Management of Data Storage, 250
14.8 Handling Global Resources, 252
14.9 Choosing a Software Control Strategy, 253
14.10 Handling Boundary Conditions, 255
14.11 Setting Trade-off Priorities, 255
14.12 Common Architectural Styles, 256
14.13 Architecture of the ATM System, 261
14.14 Chapter Summary, 262

Contents Vi

Chapter 6 Advanced State Modeling 110
6.1 Nested State Diagrams, 110
6.2 Nested States, 111
6.3 Signal Generalization, 114
6.4 Concurrency, 114
6.5 A Sample State Model, 118
6.6 Relation of Class and State Models, 123
6.7 Practical Tips, 124
6.8 Chapter Summary, 125
Bibliographic Notes, 126
References, 126
Exercises, 126
Chapter 7 Interaction Modeling 13
7.1 Use Case Models, 131
7.2 Sequence Models, 136
7.3 Activity Models, 140
7.4 Chapter Summary, 144
Bibliographic Notes, 144
References, 145
Exercises, 145
Chapter 8 Advanced Interaction Modeling 147
8.1 Use Case Relationships, 147
8.2 Procedural Sequence Models, 152
8.3 Special Constructs for Activity Models, 154
8.4 Chapter Summary, 157
References, 157
Exercises, 158
Chapter9 Concepts Summary 161
9.1 Class Model, 161
9.2 State Model, 161
9.3 Interaction Model, 162
9.4 Relationship Among the Models, 162
Part 2: Analysis and Design 165

Chapter 10 Process Overview 167
10.1 Development Stages, 167
10.2 Development Life Cycle, 170
10.3 Chapter Summary, 171
Bibliographic Notes, 172
Exercises, 172

vi

Chapter 3 Class Modeling
3.1 Object and Class Concepts, 21
3.2 Link and Association Concepts, 27
3.3 Generalization and Inheritance, 37
3.4 A Sample Class Model, 41
3.5 Navigation of Class Models, 43
3.6 Practical Tips, 48
3.7 Chapter Summary, 49
Bibliographic Notes, 50
References, 51
Exercises, 52

Chapter4 Advanced Class Modeiing
4.1 Advanced Object and Class Concepts, 60
4.2 Association Ends, 63
4.3 N-ary Associations, 64
4.4 Aggregation, 66
4.5 Abstract Classes, 69
4.6 Multiple Inheritance, 70
4.7 Metadata, 75
4.8 Reification, 76
4.9 Constraints, 77
4.10 Derived Data, 79
4.11 Packages, 80
4.12 Practical Tips, 81
4.13 Chapter Summary, 82
Bibliographic Notes, 83
References, 83
Exercises, 83

Chapter 5 State Modeling
5.1 Events, 90
5.2 States, 92
5.3 Transitions and Conditions, 94
5.4 State Diagrams, 95
5.5 State Diagram Behavior, 99
5.6 Practical Tips, 103
5.7 Chapter Summary, 103
Bibliographic Notes, 105
References, 106
Exercises, 106

Contents

21

60

90

Contents

Preface
What You Will Find, xiii
Who Should Read This Book?, xiv
Comparison With Other Books, xv
Changes From the First Edition, xvi
Web Site, xvii
Acknowledgements, xvii

Chapter1 Introduction
1.1 What Is Object Orientation?, 1
1.2 What Is OO Development?, 3
1.3 OO Themes, 6
1.4 Evidence for Usefulness of OO Development, 8
1.5 OO Modeling History, 9 »
1.6 Organization of This Book, 9
Bibliographic Notes, 10 ‘ ‘
References, 11
Exercises, 11

Part 1: Modeling Concepts

Chapter2 Modeling as a Design Technique
2.1 Modeling, 15
2.2 Abstraction, 16
2.3 The Three Models, 16
2.4 Chapter Summary, 18
Bibliographic Notes, 19
Exercises, 19

13
15

SITLib
Valachil, P#Iar:;'a‘Yo

I

Acen No: MO@1197

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and publisher shall not be liable in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Copyright © 2005 by Pearson Education, Inc.
This edition is published by arrangement with Pearson Education, Inc. and Dorling Kindersley
Publishing, Inc.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the publisher’s prior written consent in any form of binding or
cover other than that in which it is published and without a similar condition including this condition being
imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in
any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior
written permission of both the copyright owner and the above-mentioned publisher of this book.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
Pearson® is a registered trademark of Pearson Plc.

Prentice Hall® is a registered trademark of Pealgﬁ gﬂy‘jﬁm“le %‘/ .
ISBN 978-81-317-1106-4 acc. NO.“- A\ 1T -

1098 Call NO creremerissr ™

This edition is manufactured in India and is authorized for sale only in India, Bangladesh, Bhutan,
Pakistan, Nepal, Sri Lanka and the Maldives. Circulation of this edition outside of these territories is
UNAUTHORIZED.

Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia.

Head Office: 7th Floor, Knowledge Boulevard, A-8(A), Sector-62, Noida 201309, UP, India.
Registered Office: 11, Community Centre, Panchsheel Park, New Delhi 110 017, India.

Printed in India by Chennai Micro Print.

Object-Oriented Modeling
and Design with UML"

Second Edition

Michael Blaha
Modelsoft Consulting Corporation

James Rumbaugh
IBM

PEARSON
/—__-\

What Others Have Said About Object-Oriented
Modeling and Design with UML, Second Edition

“The first edition of Object-Oriented Modeling and Design by James Rumbaugh, Michael
Blaha, and their colleagues is already a classic. It has influenced me more than any other book
on modeling. I have successfully applied their ideas in large university project courses for
over ten years now, and I am glad to see an updated version of this landmark book. It is bound
to shape the thinking habits of another generation of software designers and modelers.”

— Bernd Bruegge, Technical University Munich

“Blaha & Rumbaugh have done it again. They've updated their classic book for our current
times, showing again that by their simple and straightforward explanations, their precise in-
sights, and their key examples and exercises, that the adoption of object-oriented methodol-
ogy need not be difficult. A must to have, read, and study by any practitioner.”

— Michael J. Chonoles

“Our Master and Doctoral programs in information systems are adopting the Object-Orient-
ed Modeling and Design with UML (OOMD) methodology. The book, written by two of the
leading experts in the field, covers all aspects of OOMD with deep insight, many fine points,
and up to date examples. It offers great value to our programs.”

Srinives N T Cact 2 POQRWH. Chang, Lawrence Technological University

Acc. Nu.]

Call NO. .veeereirsen o anossnmen oncsomuens
“If you are looking for a book that introduces UML, has a simple and useful object-oriented
analysis and design process, and also includes details about important object-oriented con-
cepts, then I strongly recommend that you study this excellent text.”

— Mikael Berndtsson, University of Skivde

Object-Oriented Modeling
and Design with UML"

Second Edition

Class Model Notation — Advanced Concepts

Ternary Association:

AssociationName

Abstract and Concrete Class:

AbstractSuperclass

abstractOperation1
concreteOperation2

Zlk.

I |

ConcreteSubclass1 ConcreteSubclass2
concreteOperation1 concreteOperation1
concreteOperation2 concreteOperation3

Muitiple Inheritance, Disjoint:

l Superclass1] | Superclass2 |

Multiple Inheritance, Overlapping:

Superclass

-~ {overlapping}

| Class1 I ‘ Class2 |
|
| Subclass1 | | Subclasuj | Subclass3 I
Derived Class: Derived Association:

Visibility:

ClassName

+publicOperation

-privateOperation
~packageOperation

#protectedOperation

Aggregation:

AssemblyClass

B

i

PartClass1 PartClass2
Composition:
AssemblyClass

B

f.

PartClass1

PartClass2

Constraint on Objects:

Class

attrib1
attrib2

{ attrib1

Constraint on Links:

20}

/ AssociationName

Al
* N
Class1) , {subset} Class2
Az
Derived Attribute:
Class

/ attribute

Class Model Notation — Basic Concepts

Object:

objectName:CiassName

attributeName = value

Class:

Link:

ob

1:Cia

1

AssociationName

Association:

Class1 I

__AssociationName

ob :Clagg2

assocEndNm1

Multiplicity of Associations:

ClassName

attribute
attribute : DataType[attMult]
atlnbute DataType[attMult] =

defaultValue

operation
operation (arg1:Name1

, ...) - ResultType

Association Class:

[owet }————{oma |

AssocName

attribute

operation

Generalization (Inheritance):

/\

Package:

[1

PackaﬁoName

1
Class Exactly one
*
Class Many (zero or more)
0..1 i
m Optional (zero or one)
1.
Class One or more

Ordered, Bag, Sequence:

rdered

ba
22 (e
{sequence} -
_-Cl ass

Qualified Association:

Class1

Subclass2

Comment:

...informal text... I

assocEndNm2 Ctass2

Enumeration:

«enumeration»
EnumName

enumValuet
enumValue2

